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biogeographic patterns. Their study, too, is

centered on a large database, but in this case it

is entirely of living organisms, the marine

bivalves. Over 28,000 records of bivalve gen-

era and subgenera from 322 locations around

the world have now been compiled by these

authors, giving a global record of some 854

genera and subgenera and 5132 species. No

fossils are included in the database, but

because bivalves have a good fossil record, it is

possible to estimate accurately the age of ori-

gin of almost all extant genera. It is then possi-

ble to plot a backward survivorship curve (8)

for each of the 27 global bivalve provinces (9). 

On the basis of these curves, Krug et al. find

that origination rates of marine bivalves in-

creased significantly almost everywhere im-

mediately after the K-Pg mass extinction event.

The highest K-Pg origination rates all occurred

in tropical and warm-temperate regions. A dis-

tinct pulse of bivalve diversification in the early

Cenozoic was concentrated mainly in tropical

and subtropical regions (see the figure). 

The steepest part of the global backward

survivorship curve for bivalves lies between 65

and 50 million years ago, pointing to a major

biodiversification event in the Paleogene (65 to

23 million years ago) that is perhaps not yet

captured in Alroy et al.’s database (5, 7). The

jury is still out on what may have caused this

event. But we should not lose sight of the fact

that the steep rise to prominence of many mod-

ern floral and faunal groups in the Cenozoic

may bear no simple relationship to climate or

any other type of environmental change (10, 11).
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PERSPECTIVES

W
e live life in the network. We check

our e-mails regularly, make mobile

phone calls from almost any loca-

tion, swipe transit cards to use public trans-

portation, and make purchases with credit

cards. Our movements in public places may be

captured by video cameras, and our medical

records stored as digital files. We may post blog

entries accessible to anyone, or maintain friend-

ships through online social networks. Each of

these transactions leaves digital traces that can

be compiled into comprehensive pictures of

both individual and group behavior, with the

potential to transform our understanding of our

lives, organizations, and societies. 

The capacity to collect and analyze massive

amounts of data has transformed such fields as

biology and physics. But the emergence of a

data-driven “computational social science” has

been much slower. Leading journals in eco-

nomics, sociology, and political science show

little evidence of this field. But computational

social science is occurring—in Internet compa-

nies such as Google and Yahoo, and in govern-

ment agencies such as the U.S. National Secur-

ity Agency. Computational social science could

become the exclusive domain of private com-

panies and government agencies. Alternatively,

there might emerge a privileged set of aca-

demic researchers presiding over private data

from which they produce papers that cannot be

critiqued or replicated. Neither scenario will

serve the long-term public interest of accumu-

lating, verifying, and disseminating knowledge.

What value might a computational social

science—based in an open academic environ-

ment—offer society, by enhancing understand-

ing of individuals and collectives? What are the

A field is emerging that leverages the 

capacity to collect and analyze data at a 

scale that may reveal patterns of individual

and group behaviors.

Computational Social Science

David Lazer,

1

Alex Pentland,

2

Lada Adamic,

3

Sinan Aral,

2,4

Albert-László Barabási,

5

Devon Brewer,

6

Nicholas Christakis,

1

Noshir Contractor,

7

James Fowler,

8

Myron Gutmann,

3

Tony Jebara,

9

Gary King,

1

Michael Macy,

10

Deb Roy,

2

Marshall Van Alstyne

2,11

SOCIAL SCIENCE

1Harvard University, Cambridge, MA, USA. 2Massachusetts
Institute of Technology, Cambridge, MA, USA. 3University
of Michigan, Ann Arbor, MI, USA. 4New York University,
New York, NY, USA. 5Northeastern University, Boston, MA,
USA. 6Interdisciplinary Scientific Research, Seattle, WA,
USA. 7Northwestern University, Evanston, IL, USA.
8University of California–San Diego, La Jolla, CA, USA.
9Columbia University, New York, NY, USA 10Cornell
University, Ithaca, NY, USA. 11Boston University, Boston,
MA, USA. E-mail: david_lazer@harvard.edu. Complete
affiliations are listed in the supporting online material. 

Data from the blogosphere. Shown is a link structure within a community of political blogs (from 2004),
where red nodes indicate conservative blogs, and blue liberal. Orange links go from liberal to conservative,
and purple ones from conservative to liberal. The size of each blog reflects the number of other blogs that
link to it. [Reproduced from (8) with permission from the Association for Computing Machinery]
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Abstract

This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of
communication channels, with high temporal resolution and spanning multiple years—the Copenhagen Networks Study.
Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background
information (personality, demographics, health, politics) for a densely connected population of 1 000 individuals, using
state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the
motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the
technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures.
We document the participant privacy procedures and their underlying principles. The paper is concluded with early results
from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection.
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Introduction

Driven by the ubiquitous availability of data and inexpensive
data storage capabilities, the concept of big data has permeated
the public discourse and led to surprising insights across the
sciences and humanities [1,2]. While collecting data may be
relatively easy, it is a challenge to combine datasets from multiple
sources. This is in part due to mundane practical issues, such as
matching up noisy and incomplete data, and in part due to
complex legal and moral issues connected to data ownership and
privacy, since many datasets contain sensitive data regarding
individuals [3]. As a consequence, most large datasets are
currently locked in ‘silos’, owned by governments or private
companies, and in this sense the big data we use today are
‘shallow’—only a single or very few channels are typically
examined.

Such shallow data limit the results we can hope to generate from
analyzing these large datasets. We argue below (in Motivations
Section) that in terms of understanding of human social networks,
such shallow big data sets are not sufficient to push the boundaries
in certain areas. The reason is that human social interactions take
place across various communication channels; we seamlessly and
routinely connect to the same individuals using face-to-face
communication, phone calls, text messages, social networks (such
as Facebook and Twitter), emails, and many other platforms. Our
hypothesis is that, in order to understand social networks, we must
study communication across these many channels that are
currently siloed. Existing big data approaches have typically

concentrated on large populations (O(105){O(108)), but with a
relatively low number of bits per participant, for example in call
detail records (CDR) studies [4] or Twitter analysis [5]. Here, we
are interested in capturing deeper data, looking at multiple
channels from sizable populations. Using big data collection and
analysis techniques that can scale in number of participants, we
show how to start deep, i.e. with detailed information about every
single study participant, and then scale up to very large
populations.

We are not only interested in collecting deep data from a large,
highly connected population, but we also aim to create a dataset
that is collected interactively, allowing us to change the collection
process. This enables us to rapidly adapt and change our collection
methods if current data, for example, have insufficient temporal
resolution with regard to a specific question we would like to
answer. We have designed our data collection setup in such a way
that we are able to deploy experiments. We have done this because
we know that causal inference is notoriously complicated in
network settings [6]. Moreover, our design allows us to perform
continuous quality control of the data collected. The mindset of
real-time data access can be extended beyond pure research,
monitoring data quality and performing interventions. Using the
methods described here, we can potentially use big data in real
time to observe and react to the processes taking place across
entire societies. In order to achieve this goal, researchers must
approach the data in the same way large Internet services do—as a
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